
Bell Ringer - Write the equation of the line in slope-intercept form.

Writing Linear Equations in Point-Slope Form

Point-Slope Form
$$y - y_1 = m(x - x_1)$$

Slope (m) =
$$\frac{y_1 - y_2}{x_1 - x_2}$$

 $x_1 = x$ -coordinate of a point on the line

 y_1 = y-coordinate of a point on the line

Given 2 points, write the equation of the line in point-slope form. Steps:

- calculate the slope
- choose a point to use for x₁ and y₁
- write the equation

1. (-9, 10) and (-4, -3)

$$\gamma - \gamma_l = m(x - x_l)$$

$$m = \frac{10^{-3}}{9^{-4}} = \frac{13}{5} = -\frac{13}{5}$$

$$y - 10 = \frac{-13}{5} \left(\times + 9 \right)$$

$$\gamma + 3 = \frac{13}{5} (x + 4)$$

2. (4,-5) and (-2,-7)

$$m = \frac{-5 - 7}{4 - -2} = \frac{3}{6} = \frac{1}{3}$$

$$y+5=\frac{1}{3}(x-4)$$
 $y+7=\frac{1}{3}(x+2)$

Write in point-slope form, then in slope-intercept form.

3.
$$(1,4)$$
; $m=2$

$$y-4=2(x-1)$$
 point-slope form
 $y-4=2x-2$
 $+4$
 $y=2x+2$ slope-Intercept form

Write in point-slope form, then in slope-intercept form.

4.
$$(4, -2)$$
; $m = 1/4$

$$y + 2 = \frac{1}{4}(x - 4)$$
 point-slope form

$$y + 2 = \frac{1}{4}x - 1$$

$$-2$$